Dynamics of Immune Escape during HIV/SIV Infection
نویسندگان
چکیده
Several studies have shown that cytotoxic T lymphocytes (CTLs) play an important role in controlling HIV/SIV infection. Notably, the observation of escape mutants suggests a selective pressure induced by the CTL response. However, it remains difficult to assess the definite role of the cellular immune response. We devise a computational model of HIV/SIV infection having a broad cellular immune response targeting different viral epitopes. The CTL clones are stimulated by viral antigen and interact with the virus population through cytotoxic killing of infected cells. Consequently, the virus population reacts through the acquisition of CTL escape mutations. Our model provides realistic virus dynamics and describes several experimental observations. We postulate that inter-clonal competition and immunodominance may be critical factors determining the sequential emergence of escapes. We show that even though the total killing induced by the CTL response can be high, escape rates against a single CTL clone are often slow and difficult to estimate from infrequent sequence measurements. Finally, our simulations show that a higher degree of immunodominance leads to more frequent escape with a reduced control of viral replication but a substantially impaired replicative capacity of the virus. This result suggests two strategies for vaccine design: Vaccines inducing a broad CTL response should decrease the viral load, whereas vaccines stimulating a narrow but dominant CTL response are likely to induce escape but may dramatically reduce the replicative capacity of the virus.
منابع مشابه
Vaccination and Timing Influence SIV Immune Escape Viral Dynamics In Vivo
CD8+ cytotoxic T lymphocytes (CTL) can be effective at controlling HIV-1 in humans and SIV in macaques, but their utility is partly offset by mutational escape. The kinetics of CTL escape and reversion of escape mutant viruses upon transmission to MHC-mismatched hosts can help us understand CTL-mediated viral control and the fitness cost extracted by immune escape mutation. Traditional methods ...
متن کاملCD4+ target cell availability determines the dynamics of immune escape and reversion in vivo.
Infections with human immunodeficiency virus (HIV) and the closely related monkey viruses simian-human immunodeficiency virus (SHIV) and simian immunodeficiency virus (SIV) are characterized by progressive waves of immune responses, followed by viral mutation and "immune escape." However, escape mutation usually leads to lower replicative fitness, and in the absence of immune pressure, an escap...
متن کاملDoes cytolysis by CD8+ T cells drive immune escape in HIV infection?
CD8(+) "cytotoxic" T cells are important for the immune control of HIV and the closely related simian models SIV and chimeric simian-human immunodeficiency virus (SHIV), although the mechanisms of this control are unclear. One effect of CD8(+) T cell-mediated recognition of virus-infected cells is the rapid selection of escape mutant (EM) virus that is not recognized. To investigate the mechani...
متن کاملAn “Escape Clock” for Estimating the Turnover of SIV DNA in Resting CD4+ T Cells
Persistence of HIV DNA presents a major barrier to the complete control of HIV infection under current therapies. Most studies suggest that cells with latently integrated HIV decay very slowly under therapy. However, it is much more difficult to study the turnover and persistence of HIV DNA during active infection. We have developed an "escape clock" approach for measuring the turnover of HIV D...
متن کاملConstructing Lower-Bounds for CTL Escape Rates in Early HIV and SIV Infection
Intrahost simian immunodeficiency virus (SIV) evolution is marked by repeated viral escape from cytotoxic T-lymphocyte (CTLs) response. Typically, the first such CTL escape occurs in a matter of days, starting around the time of peak viral load. Many authors have developed methods to quantify the strength of CTL response by measuring the rate at which CTL escape occurs, but such methods usually...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- PLoS Computational Biology
دوره 4 شماره
صفحات -
تاریخ انتشار 2008